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We consider three-dimensional water-wave diffraction and radiation by a structure 
consisting of a number of separate (vertically) non-overlapping members in the 
context of linearized potential flow. An interaction theory is developed which solves 
the complete problem, predicting wave exciting forces, hydrodynamic coefficients and 
second-order drift forces, but is based algebraically on the diffraction characteristics 
of single members only. This method, which includes also the diffraction interaction 
of evanescent waves, is in principle exact (within the context of linearized theory) 
for otherwise arbitrary configurations and spacings. This is confirmed by a number 
of numerical examples and comparisons involving two or four axisymmetric legs, 
where full three-dimensional diffraction calculations for the entire structures are 
also performed using a hybrid element method. To demonstrate the efficacy of the 
interaction theory, we apply it finally to an array of 33 (3 by 11)  composite cylindrical 
legs, where experimental data are available. The comparison with measurements 
shows reasonable agreement. 

The present method is valid for a large class of arrays of arbitrary individual 
geometries, number and configuration of bodies with non-intersecting vertical 
projections. Its application should make it unnecessary to perform full diffraction 
computations for many multiple-member structures and arrays. 

1. Introduction 
With advances in the design and construction of large ocean structures, the 

problem of wave diffraction and radiation by an assembly of a number of bodies is 
becoming increasingly important. Large offshore platforms are now commonly 
designed with a composite configuration of several elemental members or legs such 
as cylinders or ellipsoids. Wave-power extraction studies have also pointed to the 
advantage of wave devices made up of an array of oscillating bodies (e.g. Budall977). 
A recent proposal in Japan (Ando, Okawa & Ueno 1983) for the construction of 
offshore floating airports and large storage facilities supported on many legs is 
another example where there is an immediate need for accurate and efficient 
theoretical predictions to supplement laboratory testing. 

When a wave is incident on an array of bodies, it is necessary (except in some 
limiting cases) to account not only for the diffraction of each body by the incident 
field, but also the multiple scattering due to the other bodies. Thus each body diffracts 
waves towards the others, which in turn respond to this excitation and send back 
radiation that contributes to the total excitation of the original body, and so on. This 
concept of multiple scattering is common in all diffraction theories, and has appeared 

t Present address: Ship Research Institute, Tokyo, Japan. 
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in the context of electromagnetic scattering in the literature since at least 1893 (see 
Heaviside 1950). For water waves the phenomenon is an aspect of hydrodynamic 
interaction and was first encountered in the study of pile arrays (Lebreton & Cormault 
1969) and twin-hull vessels (Wang & Wahab 1970). 

In  principle, the full hydrodynamic interaction problem can be solved by performing 
a diffraction calculation for the entire ensemble as a unit, and a number of reliable 
numerical methods for this are now available (Mei 1978). Such computations, 
however, become prohibitive and infeasible as the number of members increase 
(similar difficulties are also encountered in designing suitably scaled experiments for 
these large structures). An attractive alternative is to require the diffraction solutions 
(theoretical or experimental) only for individual isolated members (they need not be 
identical) and to account for multiple scattering for an arbitrary configuration 
through some interaction theory that depends on these individual member properties 
only. 

The first work in this direction appears to be that of Twersky (1952), who studied 
the two-dimensional scattering of acoustic radiation by an array of circular cylinders. 
He devised an iterative scheme in which more successive reflections among the 
cylinders were included at each higher order. Using an addition theorem for the 
cylindrical wave functions, the calculations were expedited by expressing the partial 
waves around one body in terms of those at the other cylinders. This idea was 
extended to surface waves by Ohkusu (1974), who applied it to a structure composed 
of three vertical circular cylinders. In  neither case was convergence proven, although 
computational evidence in the latter and subsequent work using this method (e.g. 
Greenhow 1980; Duncan & Brown 1982) suggested that only a small number of 
iterations was in general required. The major drawback of these iterative methods 
is that, even for relatively low orders of approximation, the number of interacting 
wave components that must be accounted for increases rapidly and becomes 
intractable as the number of bodies increase. 

Another approach is the direct matrix method, wherein the amplitudes of the wave 
components around each body is solved for simultaneously, subject to the boundary 
conditions of the respective bodies. This approach was considered by Spring & 
Monkmeyer (1974), although they only applied their analysis to the diffraction 
of uniform vertical cylinders that extend throughout the depth, thus avoiding the 
need for evanescent modes. More recently, Simon (1982) developed a plane-wave 
approximation in a direct matrix solution of a uniformly spaced linear array of 
axisymmetric bodies. This is strictly a large-spacing approximation, where by 
replacing the diverging waves at  one body due to the scattering of another body by 
a single plane wave, a substantially simplified system can be obtained. The errors 
introduced, however, may not be insignificant (see $4). Simon applied his method to 
axisymmetric bodies in heaving motion only. McIver & Evans (1984) extended 
Simon’s approach in their study of wave forces on arrays of fixed vertical circular 
cylinders. By including a correction term in the plane-wave approximation, they 
obtained greatly improved results over the latter, even when the body spacings are 
fairly small compared with the wavelength (cf. figure 3). This method has also been 
extended to the calculation of added mass and damping (McIver 1984) with equally 
satisfactory results for two floating cylindrical cylinders. Another interesting piece 
of work is that of Kyllingstad (1984), who, by further assuming that the bodies are 
small (compared with wavelength), obtained a low-scattering approximation in 
which the interaction forces can be expressed in terms of single body forces and 
hydrodynamic coefficients only. 
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With the exception of Ohkusu (1974), all of the above studies ignore the effect of 
the evanescent wavefield in the interaction consideration. This is based on the so-called 
wide-spacing approximation under which the amplitude of the local waves due to one 
body is assumed to be negligible at the neighbouring bodies. Thus, for typical body 
dimensions a and interbody spacing L, Srokosz & Evans (1979), for example, based 
this assumption on large spacing compared with wavelength A, i.e. k,L % 1 
(k ,  = 2lt/A). The other relevant parameter is clearly L/a. For fixed (but not small) 
values of L/a,  the results of Srokosz & Evans for two vertical plates in two dimensions 
were remarkably good even for small k, L. Based on his numerical computations, 
Ohkusu (1974) proposed a criterion for neglecting local wave interactions that 
depended only on L/a  (> 5 for the case of three symmetrically placed vertical 
cylinders). Martin (1984) performed a careful comparison between exact calculations 
and wide-spacing results for a pair of two-dimensional cylinders for a range of k,a 
and L/a.  The dependency of the error on k, L is uneven in that for fixed L/a  the results 
may or may not improve with increasing k,L, while for fixed k,L there is a clear 
diminishing of the error when L/a  becomes large. Martin concluded that both k, L % 1 
and L/a  % 1 are important for the wide-spacing approximation to be valid. 
Heuristically, when L/a  is small enough, local standing waves must be important 
regardless of wavelength, while when L/a  + 1 the overall interaction effects diminish 
accordingly, and the relative importance of evanescent waves is less clear. For finite 
water depth h our numerical results and a simple analysis (see $4) show that the more 
critical parameter is (L-a) /h  B 1 ; and for fixed L/a  and h/a evanescent wave 
interactions can in fact be more important for shorter waves. Although the wide-spacing 
approximation appears satisfactory for most applications, there exists little quanti- 
tative assessment of the importance of evanescent wave interactions for three- 
dimensional problems. 

In  this paper we present a new method for calculating the wave hydrodynamics 
of a multimember structure using the diffraction properties of individual members 
only. This procedure combines the features of the matrix method of Spring & 
Monkmeyer (1974) and Simon (1982) and the multiple-scattering technique of 
Twersky (1952) and Ohkusu (1974). Specifically, we represent the wavefield around 
each body as a series of partial waves of undetermined amplitudes. By applying a 
transformation to express the influence of the wave system at one body in terms of 
those at all the other bodies, a set of linear algebraic equations can be derived to 
satisfy the (given) diffraction characteristics of all the member bodies. This system 
is then solved simultaneously for all the unknown amplitude coefficients. To make 
the method general for arbitrary body spacings, we also include a system of local 
waves in the body wavefield representation. Thus, provided that an adequate number 
of terms are used, the final results are in fact e m c t  in the context of linearized 
diffraction theory. Our present approach is applicable, with the exception of bodies 
having intersecting vertical projections,t to arbitrary body geometry, number and 
configuration, although calculations are simplified when the individual bodies are all 
axisymmetric. 

As illustration, we present results for several different configurations of two and 
four floating or bottom-seated vertical cyclinders. To check our accuracy, ‘exact ’ 
numerical results are obtained using a three-dimensional hybrid-element diffraction 
method (Yue, Chen & Mei 1978) which models the entire assembly as a whole. The 
comparisons are excellent in all cases for first-order quantities such as exciting forces 

f Our use of the addition theorem for the cylindrical partial waves in fact imposes a somewhat 
stricter restriction on the geometry. See the discussion after (2.4). 
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and added-mass and damping coeficients, as well as for the second-order wave drift 
force. The results for steady drift are particularly significant since (i) mooring 
requirement is an important consideration for large multimember structures ; (ii) as 
the number of legs become large, the total primary exciting force (per leg) diminishes 
for much of the frequency range owing to unequal incident phases at the individual 
members, while a corresponding implication for the steady drift force cannot be 
readily predicted ; and (iii) relatively crude approximations can often produce 
surprisingly good predictions for first-order effects such as primary exciting forces ; 
the small inaccuracies present can, however, lead to very large errors in the 
second-order drift-force calculations. 

We remark that although the present method requires a larger number of 
unknowns (NM for N bodies and M average wave components per body) and fairly 
complete single-member diffraction information (including evanescent wave 
diffraction), compared with more approximate methods (such as Simon 1982), the 
total amount of effort needed is still very significantly less than that for a full 
diffraction calculation. Thus as a final example, we apply our theory to an array of 
33 composite cylindrical legs that forms a portion of the support for a proposed 
floating airport, and for which experimental data are available. Our overall agreement 
with measurements is fairly satisfactory. 

2. Formulation for an exact interaction theory 
Consider the plane-wave diffraction (and radiation)t of an assembly of N floating 

three-dimensional bodies, under the usual assumption of linearized potential flow. We 
define local cylindrical coordinates ( T ~ ,  B,, z )  fixed in the undisturbed free surface with 
the mean centre positions 0, of bodies i = 1,2,  . . . , N (see figure 1). Assuming a time 
factor e-iwt (for angular frequency w ,  @(r ,  8, z,  t) = Re (q5(r, 8, z )  e-iwt)), the complex 
velocity potential representing the scattered wavefield outside an immediate neigh- 
borhood of body i (it is necessary to assume here that the bodies do not overlap 
vertically) can in general be expressed as a summation of cylindrical waves in that 
coordinate system : 

cosh k,(z + h) O0 C A,,, Hk)(kori) einet 
coshkoh q5:(Tt, & z )  = 

m CO + Z cos k,(z+ h) C A,,, K,(k, T ~ )  einet. (2.1) 

Here Hg), K, are respectively the nth-order Hankel functions of the first kind and 
modified Bessel functions of the second kind, and the wavenumbers k,, k,, 
m = 1,2, . . . , are the positive real roots of the dispersion equations 

m-1 n--w 

k, tanh k, h = w2/g ,  (2.2a) 

and k, tank, h = - w 2 / g ,  (rn = 1,2,  . . .), (2.2b) 

for water depth h and gravitational acceleration g. In (2.1), A,, are unknown 
complex amplitudes to be determined, and the first and second terms represent the 

t The derivation for the radiation problem follows closely the development here and will not 
be elaborated. 
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FIQURE 1.  Definition sketch for a multiple-member body (plan view). 

propagating and evanescent wavefields respectively. For brevity we adopt a matrix 
notation for (2.1), 

(2.3) 

where here and in the sequel a suitable truncation is always implied, and A,, Y: are 
respectively the vectors of coefficients A,, and the scattered cylindrical partial waves 
in terms of H t )  and K,. 

To account for interactions among the bodies, it is necessary to evaluate the 
scattered potential 4: in terms of the representation of the incident potential # at 
body j, j = 1,2, . . . , N ,  j # i. This can be accomplished by the addition theorems for 
Bessel functions (Abramowitz & Stegun 1964), valid for r, < L,,; 

@ = AT !fT(r,, 4,4, 

m 

l--m 
H2)(ko r,) e i n ( e ~ - ~ ~ ~ )  = z H t i l ( k 0  L,,) Jl(E, r,) eil("-ej+ad, 

(i,j = 1 , 2 , .  . . , N ,  i #j), (2.4a) 

and 
m 

1--m 
K,(k, r,) ein(8i-ad = z K,+&k, L,,) Iz(km r,) eil(n-ej+ai$ 

( i , j = l , 2  ,..., N ,  i # j ) ,  (2.4b) 

where L,, is the distance between the origins 0, and 0,, a,, the azimuthal angle of 
0, relative to 0, (see figure 1 ) and Jz , Il are respectively the Bessel and modified Bessel 
functions of the first kind of order 1. (In addition to the requirement of non-overlapping 
vertical projections, the restriction r, < L,, in essence further requires, for non- 
axisymmetric bodies, that the escribed cylinder to each body centred a t  its respective 
origin must not enclose any other origin.) Equations (2.4) define a coordinate 
transformation qj from i to j representation for the set of partial waves: 

Y: = q, Y;, (2.5) 
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where ¶'; is the vector of incident partial-wave functions represented by J ,  and I,,. 
Comparing (2.4) and (2.5), we note that the elements of 6, are of the form 

( V p q  = ei(q-P)atjH(1) q-p (k 0 L 6 j )  (2.6a) 

for the propagating (m = 0) modes, and 

( q,)pq = ei(q-p)au( - i )p -  Kq-p(km 4,) (2.6b) 

Substituting (2.5) into (2.3), the potential @ evaluated in terms of the wavefield 
for the evanescent ( m  > 0 )  modes. 

at j is 

The total incident potential in the vicinity of body j due to the scattering of all the 
other bodies and the ambient incident field q50 is thus 

tz5 

where u, is simply the coefficient vector of the partial-wave decomposition of ~5~ about 
0,, and ( u , ) ~  # 0 only for propagating modes p. 

Finally, we observe that the total incident and scattered waves for any body j 
((2.8) and (2.3)) must be related by the (isolated-body) diffraction characteristics of 
that body. Specifically, there exist 'diffraction transfer matrices ' B, (often also 
referred to as T-matrices) for bodies j = 1,2, . . . , N that relate the incident and 
diffracted partial waves at j, i.e. 

6 #, 

Thus element (B,)pq is the amplitude of thepth partial wave of the scattered potential 
due to a single unit-amplitude incidence of mode q on body j. For general geometries, 
the transfer matrix B, is fully populated. When the body is axisymmetric, however, 
B, is sparse owing to the circular-cylindrical decomposition of (2.1), and the result 
is simplified. 

In an interaction theory we simply assume that the B, are given from single-body 
diffraction calculations (or experiments), so that (2.9) can be solved for the unknown 
amplitudes A,. Once these amplitudes are determined, the primary forces and 
moments and the second-order drift forces on each body can be calculated directly 
by integrating over individual body surfaces (the single body diffraction analysis must 
also provide body potentials corresponding to each outer partial wave mode). Results 
for the entire structure can be obtained by summing, and for the steady horizontal 
drift forces alternatively by accounting for the total momentum change in the far 
field (Newman 1967). The far-field approach is particularly convenient when the 
number N of bodies is large, although care must be exercised to re-express the 
diffraction potentials q$, i = 1,2, . . . , N in a common coordinate system. 
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3. Single-body diffraction - Determination of B - for an axisymmetric 
geometry 

For simplicity, we consider only the case where the body is axisymmetric with 
respect to 0. Because of the inclusion of evanescent modes, the diffraction transfer 
matrix B contains terms corresponding to the following two diffraction problems. 

(i) Scattering of a progressive incident mode 
cosh k,(z + h) 

Jn(kor) cine, (n = 0, k l ,  +2 ,  . . .), & = cosh k,  h ( 3 . 1 ~ )  

with the resulting far-field scattered wave 
cosh k,(z+ h) aJ 

H g ) ( k , r )  cine+ I: CP,, cosk,(z+h) K n ( k m r )  cine, 
m-i 

@fl = 'rn cash ko h 

( n = 0 ,  +1, + 2 ,  ...). (3 . lb )  

(ii) Scattering of an evanescent incident mode 
q5 ,L, f l=coskl (~+h)In(k lr )e ine ,  ( l = 1 , 2  ,..., n = O , _ f l , + 2  ,... ), ( 3 . 2 ~ )  

with the corresponding far-field scattered potential 
cosh k,(z + h) 00 

Hc,')(k, r )  cine+ C CFmn cos km(z + h) K,(k, r )  eine 
m-1 

$s",fl = '&& cash k0 h 

( I =  1 , 2 ,  ..., n = O ,  + l , + 2 ,  ...). (3.2b) 

Note that (i) is typically encountered in plane (progressive) wave diffraction (after 
partial-wave decomposition), while (ii) corresponds to a somewhat fictitious problem 
of diffraction of a (spatially) monotonic disturbance characterized by I,,. Both sets 
of potentials (3.1) and (3.2) satisfy the classical linearized boundary-value problem 
for an axisymmetric body. For q5,, = + $s, = p,, eine 

l a  a n2 (;s;(rG)-7+$)p,, = 0 in the fluid V ,  z < 0, 

($-$)g.~,, = 0 on the free-surface F, z = 0, 

(3.3a) 

(3.3b) 

-- * n  - 0 on the body and bottom, (3.3c) 

and a suitable radiation condition holds for the scattered part ofp, (see (3.1 b), (3.2b)). 
Equations (3.3a-c) are solved for the unknown coefficients Crn, Cg,,, CZ.,, and 

C:mn ( 1 ,  m = 1 ,2 , .  . . and n = 0, + 1, f 2 ,  . . .), which are the elements of B. We 
remark that if evanescent waves are ignored in the interaction, B contains only C&, 
n = 0,  + 1, f 2 ,  . . . , and only problem (i) is required. 

When the body is a uniform vertical cylinder that spans the water depth, (3.1) and 
(3.2) can be extended to the body surface, and the coefficients Cp, CL are given 
analytically from the separable equations (3.3). In  general, however, one must resort 
to numerical solutions for the two-dimensional (axisymmetric) propagating and 
evanescent wave diffraction problems. While a number of reliable diffraction 
techniques are now available (Mei 1978) (strictly only for problem (i)), we develop 
an axisymmetric hybrid-element method which is based on a variational formulation 

an 
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using a fkite-element discretization near the body and an analytic series representation 
outside a vertical circular cylinder enclosing the body. This approach is a particularly 
attractive alternative since in this case the outer representations are precisely of the 
form (3.lb) and (3.2b) for the progressive and local wave diffraction problems 
respectively. The details of the axisymmetric hybrid element method is very similar 
to that of Yue et al. (1978) for three-dimensional problems, and an outline is given 
in the Appendix for convenience. 

Once the diffraction matrices B,, for bodies i = 1,2,  . . . , N (if not identical), are 
completed, (2.9) can be solved for the total N-body solution for any arbitrary 
configuration of these bodies. 

4. Results and discussion 
To confirm the validity of the present method, and to investigate the effects of 

hydrodynamic interaction and the importance of local waves, the interaction theory 
of $$2 and 3 is implemented and applied to a number of configurations. For 
comparison, ‘exact ’ diffraction computations are also performed using a three- 
dimensional hybrid-element method (HEM)? (Yue et al. 1978) which solves the flow 
for the complete structure so that full hydrodynamic interactions are modelled. 

For computations, the infinite series in (2.1) are truncated to M evanescent modes 
(m = 1,2, . . . , M )  and N, angular components (n = 0, f 1, k 2 ,  . . . , fNm) for m = 0, 
1,2, . . . , M .  The same truncations are also carried out for (2.4), (3.1) and (3.2). 
Assuming an identical choice for each body, the total number of unknowns for the 
problem is then 

M 

m-o 
NT = N (2Nm+1). 

Because of the disparate asymptotic behaviours of the various Bessel functions, we 
find it extremely important in the numerical scheme to properly normalize all these 
special functions with respect to both order and argument. The analysis is fairly 
standard and will be skipped here. 

We consider here four different geometries, each consisting of N identical legs. The 
legs are vertical circular cylinders (or cylindrical segments) with (waterplane) radius 
a (diameter D = 2a) and (total) draft H. All our results are for the combined structure 
and are non-dimensionalized by : 

I$ = exciting force/pgnaHao N, (4.la) 

Mij =added mass/pna2HN, (4.lb) 

Nii = wave damping/opna2HN, (4.1 c) 

(4.ld) 

Here p is the fluid density, a, the ambient incident wave amplitude, and i , j  = 1, 
2, . . . , 6  the generalized coordinates (for surge, sway, . . . , yaw). For moments and 
rotations (i,j > 3) the origin is always fixed on the free-surface at the centre of the 
total structure, and the normalizations (4.1) contain the extra length factor(s) a. 
In the following, h is the water depth, L the centre-to-centre spacing between the 
legs, and the incident wave angle /? is measured from the x-axis (figure 1). 

7 A recent study (Matsui & Kato 1983) has found that for a variety of geometries (where analytic 
results are available), HEM yields somewhat better efficiency and accuracy than the classical 
boundary-integral equation (singularity-distribution) method. 

4 = steady drift force/pgxaa: N. 
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1==r 2.5 

H = 6.6 rn 

Ic 
7-7 

FIQURE 2. Geometries for: (a) two uniform (bottom-seated) vertical cylinders; (b) two truncated 
(floating) vertical cylinders; (c) four truncated (floating) vertical cylinders; (d )  a composite 
cylindrical leg of a 3 by 11 floating array. 

Geometry 1. Two uniform (bottom-seated) vertical cylinders yigure 2a)  
To evaluate the influence of local waves, two spacings LID = 2 and 4 with a fixed 
depth of h / D  = 2 are considered. For this geometry the diffraction matrix B for a 
single body can be obtained analytically, and evanescent effects (A,,, m > 0 in (2.1) 
and q5L of (3.2)) are present only for the radiation (forced-motion) problems. 

Figure 3 shows sample resultst for the narrower spacing (LID = 2)  plotted against 
non-dimensional wavenumber k,D. For every case, including second-order forces, the 
present interaction theory agrees almost exactly with the full diffraction (HEM) 
results. For the interaction calculation NT = 18 complex unknowns (M = 0, No = 4, 
no local waves) for the diffraction problems (exciting and drift forces) and NT = 54 
( M  = 2, N ,  = 4 for m = 0,1 ,2 ,  including local wave interaction) for the radiation 
problems are used. In  contrast, the HEM computations, which utilize two vertical 

t For all the configurations considered in this paper, computations and comparisons have been 
made for all the degrees of freedom and for a range of incident angles. Owing to space considerations, 
only representative results are shown. 
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FIQURE 3(e,f). For caption see facing page. 

HEM 
Fz K 

0.2310 0.1662 

interaction theory (M = 0) 
No = 2 (NT = 10) 0.2290 0.1650 
No = 4 (NT = 18) 0.2314 0.1667 
NO = 7 (NT = 30) 0.2314 0.1667 

TABLE 1. Typical convergence of interaction-theory results for the c&8e of two uniform legs 
LID = 2, h/D = 2, ko D = 3. 

planes of symmetry and an optimal elliptical analytic matching boundary (owing to 
the elongated two-body configuration), require 483 complex unknowns (453 quadratic 
element nodes and 30 far-field coefficients) for a comparable accuracy of less 
than - 1 % error. Some typical interaction theory convergence figures are given in 
table 1 .  

= 0') Returning to figure 3, we see that for the surge-exciting-force magnitude 
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(figure 3a) ,  a zeroth-order theory (i.e. one that only accounts for the incident wave 
phasing a t  the individual legs), 

already produces rather reasonable results. For comparison, & obtained using a 
'plane-wave' approximation similar to  that of Simon (1982) as well as the improved 
method of McIver & Evans (1984) are also shown for the primary exciting forces. The 
interaction effect is much more interesting for the steady drift force (figure 3 b ) ,  where 
the prediction based on a single leg (neglecting all interactions) is clearly inadequate. 

I n  beam seas (P = 90") the first-order force F, (figure 3 c )  deviates only slightly from 
the zeroth-order approximation. Note that for P = 90" both the zeroth-order and 
' plane-wave ' approximations reduce identically to the single body (no interaction) 
result, whereas the interaction is captured quite well by the McIver & Evans 
correction. I n  contrast with F,, the steady drift force (figure 3 d )  still exhibits a 
rather pronounced effect of interaction. Calculations have also been performed for 
oblique incident waves (0" < /? < 90") with equally satisfactory comparisons. The 
results are qualitatively similar to those of figures 3 (a ,  b )  and ( c ,  d )  for the surge and 
sway forces, and are not shown. 

For the horizontal-radiation problems evanescent waves are present. Figure 3 (e) 
shows the surge added-mass coefficient M,,  for the two-leg structure. Observe that 
the present theory including local modes produces excellent agreement with 'exact ' 
calculation, while when only the progressive waves are used the comparison is less 
satisfactory. The deviation and thus the contribution of local wave interaction, 
interestingly, is greater for short wavelengths and diminishes for long waves, contrary 
to that suggested by a 'wide-spacing' assumption based upon large k, L .  For finite 
depth, evanescent wave amplitudes in general decrease exponentially at distance L 
with increasing ( L - a ) / h  for typical body dimension a ,  and depend only weakly on 
(increase with larger) k, L. This can be clarified by a simple analytic demonstration. 
Consider, for example, the swaying (with unit velocity) of a uniform vertical cylinder 
of radius a. The separable solution is simply 

m 

$(r> 092) = Z $m(r>  2 )  ~ 0 ~ 0 ,  
m-o 

2 sinh k, h cosh k, h H,(k,  r )  
ki h 1 + sinh 2k, h/2k,  h Hi(k,  a )  where $,(r, 4 = - 

2 sink, h cos k,(z+ h )  K,(k, r )  
9m(r7  = 1 +sin 2k,  h/2km h K l ( k ,  a)' m = 1 , 2 , .  .. . and (4.3) 

For moderate values of k, h, k ,  h are close to mx and are relatively insensitive to the 
frequency CT = d h / g  (see (2 .2b ) )  : 

(4 .4 )  

At a distance L the magnitude of the mth evanescent mode is (upon using the 
asymptotics for large argument for K )  approximately 
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Comparing the magnitudes of 9, and q5m on z = 0 where the ratio is minimum, we 
have (for k,h > O(1)) 

In  general, then, for an axisymmetric body of (average) radius a, an estimate of the 
dominant dependence is 

(4.7) 

Thus for a fixed depth h, local waves can be ignored at adjacent bodies when the 
spacing is large compared with body dimension and water depth (specifically, 
(L-a)/h B 1). On the other hand, for a given configuration, g5m I does not diminish 
for shorter (propagation) wavelengths, but in fact increases with frequency cr 
according to (4.4) and (4.7). 

Finally, we show the surge damping coefficient N,,  in figure 3 (f). As expected, the 
inclusion of local waves has no effect on the damping coefficient, although a crude 
estimate based on a single leg is qualitatively incorrect. The coefficients for transverse 
motions (M,, ,N, ,  etc.) exhibit similar but smaller interaction effects and are not 
shown. 

Similar calculations have also been performed (but not shown here) for a wider 
spacing (LID = 4) with equally excellent agreement between the interaction theory 
and exact diffraction predictions. With the larger L/D, the interaction features 
do not diminish significantly as compared with figure 3, but exhibit more rapid 
variations (cf. (4.2)). The drift force shows a decaying oscillation with k,D about 
the single-leg result, both of which eventually approach the short-wave asymptotic 
value of 2/(3x) (Havelock 1940). The effect of local waves is now nearly negligible 
for the added mass, confirming the validity of ignoring these waves for larger 
inter-body spacings. 

+m It  e-kmh(L-a)lh. 

Geometry 2. Two truncated vertical cylinders v;Sure 2 b) 
The cylinders are now truncated at a draft H = D floating in water of depth h = 20 .  
Unlike the preceding example, evanescent waves are present for both diffraction and 
radiation. There are no analytic solutions for the transfer matrices B, and the 
progressive and local wave diffraction problems are calculated numerically as 
explained in $3. We have studied three different spacing ratios L/D = 1.3, 2 and 4; 
however, typical results are shown only for the smallest spacing L/D = 1.3 (figure 4). 
The interaction-theory results, which are based on numerical single-body coefficients, 
again give uniformly satisfactory comparisons with full diffraction calculations. 
For all the cases, we use NT = 54 (M = 2, N ,  = 4, m = 0,1,2) and NT = 18 ( M  = 0 ,  
No = 4) when we ignore local waves. HEM now requires between 700 and over 900 
total unknowns, depending on spacing. An example of convergence for the present 
method with respect to both M and Nand comparisons to HEM and single leg results 
for this geometry are shown in table 2. 

For LID = 1.3 the effect of local wave interaction on 4 (figure 4a)  is present mainly 
at the longer wavelengths. This is also true for N,, (figure 4b). For this geometry 
evanescent waves are introduced by the mismatch of boundary condition below 
z = - H, so that local wave amplitudes vanish rapidly with increasing k, H. The effects 
are smaller for drift force (figure 4c)  and affect only the very small wavenumbers. 
This can be seen from a pressure-integration expression for the drift surge force, where 
a large contribution comes from the waterline, while the quadratic term in the body 
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0.5 I I I I i i i i 

0.3 \ /9 = 00 
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0.1 
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ko D 

FIQURE 4(e, f). For caption see facing page. 

Fz F, Mll M*, Nll 5 
Single body 

Single body 

HEM 0.18828 0.00779 0.39797 0.34852 0.18146 0.16736 

Interaction theory 
M=O N o = 4  0.18871 0.00754 0.41866 0.31033 0.18164 0.16762 

M = l  N o = 4  0.18875 0.00777 0.41338 0.34694 0.18182 0.16763 

M = 2  N o = 2  0.18848 0.00761 0.39405 0.35070 0.18403 0.17583 
No = 4 0.18879 0.00772 0.39739 0.35076 0.18185 0.16763 
No = 7 0.18880 0.00772 0.39740 0.35076 0.18185 0.16767 

M = 3  N,=4  0.18880 0.00772 0.39260 0.35160 0.181 83 0.16763 

TABLE 2. Typical convergence of interaction-theory results for the case of two truncated legs 
LID = 1.3, H = D, h = 20, k,D = 3.1 

(no interaction) - - 0.32423 0.31054 0.35599 0.191 24 

- - - (with phasing) 0.16433 0.00363 - 
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surface integral decays twice as rapidly with depth ( - eZkoz) as the incident potential. 
The situation is rather different for M,,  (figure a d ) ,  where predictions with or without 
evanescent waves differ in both the short- and long-wave ranges. 

For vertical motions and forces, the effect of hydrodynamic interaction and of local 
wave diffraction is small for F, (figure 4e) .  For the added mass M,, (figure 4 f ) ,  
however, evanescent waves have a very distinct influence, especially for large k, I). 
The interaction curves, with and without including evanescent effects, approach each 
other a t  low frequency but deviate appreciably as the wavelength decreases. Indeed, 
for large k, D, the latter coincides with the values for a single cylinder (no interaction), 
while the inclusion of local waves in the former yields the correct results. Strictly 
speaking, since the propagating and evanescent waves interact with each other, one 
cannot conclude that evanescent waves only are responsible for interactions at  high 
frequency. On the other hand, when the local wave components are kept but the 
amplitudes of all the propagating wave components are set to zero in the final 
expression for the incident wave at each body, we are able to recover essentially the 
earlier correct large-k, D results. Computations have also been performed for other 
incident angles and radiation modes, where there are generally somewhat smaller 
effects of interaction. 

For the wider spacings we computed (LID = 2 , 4 ) ,  the comparisons remain 
excellent, although the evanescent-wave effects become quite unimportant, largely 
confirming the findings of earlier investigators. In  summary, we find that local 
wave interaction effects are important only when LID is relatively small, and when 
present appear primarily in two ways : free-surface effects in the low-frequency 
regime, which are manifest in all the results; and non-free-surface effects, which affect 
the added-mass prediction for short wavelengths. 

Geometry 3.  Four truncated vertical cylinders & w e  2 c )  

To evaluate the importance of interaction as the number of bodies increases, we study 
a geometry with four legs with HID = 1 ,  h / D  = 2 and L / D  = 2. Structures similar 
to this have been used as supports for large offshore platforms where interaction 
effects on first- and second-order wave forces are of significant interest. 

The results are shown in figure 5.  The interaction theory now employs NT = 108 
unknowns ( N  = 4,  M = 2, N ,  = 4,  m = 0, 1,2). The full diffraction HEM calculation 
for a quadrant of the structure (utilizing two planes of symmetry) uses over 800 
degrees of freedom. Because of storage and computation limitations, the HEM grid 
we used is somewhat coarser than required, especially for the higher wavenumbers. 
We believe this to be the source of the discrepancies in figure 5 ,  since the 
interaction-theory values have already converged. 

Comparing figures 4 and 5 ,  the results (normalized by N )  for two and four legs are 
qualitatively quite similar. This can be explained from earlier two-leg findings for 
different incident angles, where interaction effects are found to be dominant primarily 
when there is sheltering of the leeward body. 

Geometry 4 .  A 3 by 1 1  ( N  = 33) array of vertical cylinders with footings 

To test the effectiveness of the present interaction theory for large structures, we 
consider as a final example this array of 33 floating legs. This structure forms a portion 
of the support for a proposed floating airport in Japan (Ando et al. 1983). For 
increased buoyancy, each leg is placed on top of a larger cylindrical footing as shown 
in figure 2 ( d )  (in prototype dimensions). The rectangular interleg spacing of the array 
is 16.4 m. For this geometry a full diffraction calculation is clearly infeasible. 
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FIGURE 6. Results for a 33 (3 by 11)  floating array of composite vertical cylindrical legs D = 5 m, 
H = 6.6 m, h = 54 m, L = 16.4 m for: 0, 1 :30 scale experimental measurements; (curves) I, 
interaction theory (no local waves) ; N, no interaction (single-body) prediction. 

However, a 1:30 scale experiment had been conducted earlier at the Offshore 
Structure Experimental Basin (40 x 27.6 m) of the Ship Research Institute of Japan 
by Kagemoto (1982). In  that experiment the drift forces on the structure in regular 
beam waves were measured by using counterweights. The model was otherwise 
unconstrained (freely floating), although the amplitude of motion was small and 
measurable only for very long wavelengths. In the present calculation the hydro- 
dynamics of a single composite-cylinder leg is obtained with the axisymmetrical 
diffraction code of93, and the interaction theory is computed with a relatively small 
number of coefficients, NT = 165 ( N  = 33, M = 0, No = 2). Motions of the structure 
are neglected. 

The result for the wave drift force 8 for incident waves in the transverse (3-leg) 
direction is given in figure 6. For comparison, the no-interaction (single-leg) prediction 
is also plotted. We can see that the effect of including interaction is significant, and 
the comparison of the interaction results with experimental data overall is fairly good. 

For illustration we have made computations here for assemblies of identical 
axisymmetric bodies only. The method can be readily extended to non-identical or 
general-shaped bodies. The former is straightforward and involves calculating a 
different B for each different body geometry. The latter requires three-dimensional 
progressive and evanescent wave-diffraction computations for the single body (or 
bodies) to obtain the fully-populated B-matrix (or matrices). 

5. Summary 
By combining and extending the matrix method of Simon (1982) and the 

multiple-scattering idea of Ohkusu (1974), an interaction theory has been developed 
which predicts the complete hydrodynamics of a multibody structure given only the 
diffraction characteristics of individual members. The present theory is in general 
applicable to any number, locations and geometries of bodies, which do not overlap 
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vertically, and when the evanescent wave system is retained, to arbitrary body 
spacings. When the bodies are not vertically axisymmetric, the use of addition 
theorems strictly requires that vertical circular cylinders can be constructed that 
enclose the individual bodies or interacting groups but do not contain the origin of 
another such cylinder. Possible extension of the present method to situations where 
this is violated is being investigated. 

Numerical results have been given for a number of configurations of vertically 
axisymmetric bodies, where for comparison large-scale diffraction calculations for the 
entire structures have also been performed. The interaction theory gives almost exact 
predictions for first-order exciting forces, added-mass and damping coefficients and 
second-order steady drift forces. Local wave interaction is found to be important 
primarily for small spacing to body diameter ratios (LID 5 2) especially for added 
mass, and can sometimes be more appreciable for shorter wavelengths. A final 
example for a 3 by 11 array of floating bodies using only 165 coefficients shows a 
satisfactory comparison with experimental data, demonstrating the efficacy of the 
met hod. 

When the detailed hydrodynamic properties of individual bodies or body groups 
are known, the present theory eliminates the need for full diffraction computations 
for a large class of multiple-body structures or arrays. 
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Appendix. Outline of the axisymmetric hybrid-element diffraction 
formulation 

The diffraction of cylindrical progressing and local waves by an axisymmetic body 
is governed by (3.3). When the body geometry is irregular, analytic solutions cannot 
be found, and we enclose the body and a small fluid domain V around it by a fictitious 
vertical circular cylinder 8. The boundary-value problem is now replaced by (3.3a-c) 
for pn inside 8; (3.3a, b )  and the radiation condition 

for the potential 9; = hn + R ~  outside 8; and the matching conditions 

(A 2a) 

If we now choose dn to be given by (3.1 b )  or (3.2b) depending on 9, the combined 
boundary-value problem implies and is implied by the stationarity of the following 
functional (Yue et al. 1978) : 
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The proof follows directly upon taking the first variation of J and using the fact that 
vkn satisfies (3.3a, b )  and (A 1). Note that the matching conditions (A 2) are satisfied 
as natural boundary conditions by the variational principle (A 3). 

I n  our hybrid-element implementation we truncate the series in (3.1 b)  or (3 .2b)  at 
m = M ,  and represent the potential pn in the (irregular) interior domain by 8-node 
isoparametric quadrilateral quadratic finite elements. Thus this approach takes 
advantage of the versatility of finite elements to describe complex geometries in a 
small inner region, and the power of analytic representation in the exterior infinite 
domain. Furthermore, because of the natural matching conditions, all of the unknown 
coefficients of vkn and nodal values of pn can be solved for simultaneously by a direct 
application of (A 3). 
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